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LETTER TO THE EDITOR 

z2 - llz - 1 as an algebraic invariant for the 
hard-hexagon model 

D W Wood and R W Turnbull 
Mathematics Department, University of Nottingham, University Park, Nottingham NG7 
ZRD, UK 

Received 7 July 1988 

Abstract. The limiting partition function per site %,(z) for the hard-hexagon model has 
two singular points at the roots of z2 - 1 l z  - 1 = 0. These two points appear to be algebraic 
invariants associated with algebraic functions defined on an infinite sequence of finite 
transfer matrices. 

The hard-hexagon lattice gas model (Baxter 1980, 1982) is one of a very small number 
of exactly solvable lattice models in statistical mechanics. The model which is defined 
on a triangular lattice of N = 3n x m sites is exactly solvable only in the sense that the 
grand canonical partition function per site &(z) and the order parameter per site 
R,(z) can be obtained in the double limit of both m and n + CO. That is to say that 
E,(z) or R,(z) cannot be explicitly obtained through a limiting process performed 
on exactly known functions EN(z) or RN(z)  with either N finite or n finite and m + 00 

(semi-infinite lattice strips). The only example in lattice statistics where such a process 
is possible remains the Onsager-Kaufman solution of the two-dimensional Ising model, 
where the partition function Z,,,, on an m x n square lattice can be obtained explicitly 
(Kaufman 1949). The intractible ‘analysis’ of the full limit of m, n + 00 is not present 
for a sequence on n of n x 03 systems. Here the mathematical aspects are purely 
algebraic in character and well defined in terms of algebraic functions. The connection 
between algebraic functions and the limiting emergence of critical point behaviour in 
lattice models has recently been explored by Wood (1987,1988) and Wood et a1 (1987). 
From the algebraic point of view the partition function per site, in the present case 
E,, is the limit function of an infinite sequence of algebraic functions, and the critical 
point, or any other non-physical singularities, in the limiting partition function per 
site are limit points in sequences of algebraic branch points. It is also possible to 
construct sequences of algebraic numbers (roots of one-variable polynomial equations) 
which converge to the critical point. I t  is of course an open question under what 
circumstances the limit functions and limit points remain algebraic functions and 
algebraic numbers, respectively. In the present case Baxter’s solution (Baxter 1980, 
1982) shows that the two singular points in  the activity plane are algebraic and given 
by the roots of the quadratic 

z2-11z-1=0.  (1) 

In Baxter’s original solution Em and R, were both obtained in parametric form where 
the explicit dependence upon z was not known. However, in a recent remarkable 
paper Joyce (1988) has shown that both %( z) and RE( z) are indeed algebraic functions 
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and thus the critical point behaviour is entirely represented by algebraic branch points 
and algebraic cycles. The hard-hexagon model, in fact, forms the second example of 
this mechanism since in earlier work Joyce (1975a, b) has shown that the thermodynamic 
limiting functions for the three-spin Ising model are also algebraic functions (see also 
Wood 1987). 

Given that E-( z )  is both an algebraic function and the limit function of a sequence 
of algebraic functions, are there any algebraic invariants exhibited by members of this 
sequence? The purpose of this letter is to report that the two roots of (1) (the singular 
points of Em) are invariant singular points on an infinite sequence of algebraic functions 
which are generated from an irreducible factor of the characteristic equations of the 
sequence of finite transfer matrices, T 3 , ( z )  for 3n x CO lattice strips. This is a 'computer 
discovery': an algebraic proof eludes us, but were one to follow it would probably 
have something to say about the unknown function sequence Z N ( z ) .  Algebraic 
invariants of this type are usually associated with a simple duality symmetry and 
previous examples have been given by Wood er al (1987). It is interesting that this is 
not the case here. 

Consider a general n x 03 lattice strip with cyclic boundary conditions imposed in 
all dimensions. Let the transfer matrix be T , ( z ) ,  where z is some suitable variable for 
the problem; in a Potts model, for example, z = eK, and in the hard-hexagon model z 
is the activity. The partition function per site is AA"', where A. is a branch of an 
algebraic function 

F,(A, Z) = A U p A P ~ @  = 0 (Anp an integer) 
QP 

which is an irreducible polynomial factor of the full characteristic equation of T , ( z ) .  
A. is identified as the branch of maximum modulus for real positive z (see Wood 1987, 
1988). The resolvent function R,(h, z )  is defined by eliminating A between the poly- 
nomial ( 2 )  and the polynomial equation F ( h A ,  z )  = 0. Thus, for a given value of z 
the root set { h i }  of the polynomial equation 

R, ( h ,  z )  = BPPZUhP = 0 (Bnp  an integer) 
U S  

( 3 )  

contains all the pair ratios of the root set {A,} in ( 2 ) .  Technically the root set { h i }  
should be reduced by eliminating all the trivial roots at h = 1 (excluding the branch 
points of A). If h is in { h i }  then so is h - ' .  The polynomial equation ( 3 )  defines an 
algebraic function z ( h )  and generates an algebraic curve via the branches { z j ( h ) } , .  

The domain of interest for our problem is Ihl= 1 and h real. A subset of the curves 
{ z j ( h ) } ,  on Ihl= 1 are the locus of points in the z plane where the root set {A,} contains 
pairs which are simultaneously maximum and equal in modulus. This has been denoted 
by C y  (Wood 1987, 1988); the endpoints of Cl' are branch points of A in ( 2 ) .  In 
the limit of n + CO these branch points converge onto the singular points of the partition 
function per site. We can extend C y  through its branch point ends by adding to 
Ihl= 1, h real. In this way complex conjugate components of CA' can be made to 
intersect the real z axis. One of these intersection points converges to the ieal critical 
point in the limit of n+m. Such an intersection point for n finite is necessarily a 
branch point of the set { z j ( h ) } ,  where ( 3 )  has a double root. If we define A , ( h )  to be 
the discriminant of (3), then one of the roots of A , ( h ) ,  h, say, corresponds to our real 
axis intersection point and ( 3 )  with h = h o  has a root which converges to the true 
critical point. Within this panoply of algebraic functions, algebraic invariants for 
models with a simple self-duality symmetry can arise very simply. Let U be the duality 
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variable (for example U = sinh 2K for the conventional Ising model or U = (eK - l)/J;f 
for the q-state Potts model). The effect of self-duality on (2) is simply that the equation 
can always be written in the form 

where A = g ( u ) y ,  w = U + U-' and where g(u) is some trivial multiplicative factor. 
Since on the circle (U[ = 1 the roots are real or in complex conjugate pairs, the domain 
Ihl= 1 and real h always generates Iu(  = 1 as a member of the algebraic curves {z j (h)} , .  
Thus all of the circle ( U (  = 1, including the real intersection points, are invariant to 
n, U = 1 being the real critical point. 

For the hard-hexagon model, although the algebraic curves { ~ ~ ( h ) } ~ ~  do not contain 
any invariant arc lengths, the two roots of (1) always exist as intersection points with 
the real axis. This means that, for any n 2 2 ,  the discriminant A3,(h)  contains at least 
two roots, ho and h;,  say, where R3,(ho, z )  has a root at i(11 +SA) and, correspond- 
ingly, R (  hh, z )  has a root at i( 11 - SA). As n increases it appears that the discriminant 
A3,(h)  has more than two roots which correspond to the roots of (1). As a concrete 
example, the 6 x 00 strip has an irreducible polynomial factor 

A5 - A4(z2 + 4 ~  + 1) - 2A3z(2z2+4z + 1) 

+ ~ A ' z ~ ( ~ z * +  7 2  + 4 )  + ~ A z ' ( z  - 1) -8~' = 0. ( 5 )  

The resolvent (3) is a menacingly long polynomial 
16 

C ( $ , ( h )  = h 2 f b j ( h - ' ) )  
j = O  

the polynomials $j are listed in the appendix. A portion of the curves { z j (  h ) } 6  is shown 
in figure 1. That part marked CA+ corresponds to Ih( = 1 and terminates at the branch 
point ( h  = 1). On extending into the domain of real h, CA+ is continued (represented 
by the full curve) down to the real axis point denoted by 0. Further exploration of 

Figure 1. A portion of the algebraic curve z ( h )  obtained from ( 6 ) .  CA+ terminates at 0 
where h = 1. The banana encasement and the extension of CA+ are part of the algebraic 
curve for h real. The three points L, 0 and R correspond to branch points of z ( h ) .  L 
occurs at the exact critical point z = $( 11 + Sa). 
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real h reveals a 'banana'-like encasement of this extension with real axis intersection 
points denoted by L and R. Both these points and 0 correspond to branch points of 
the algebraic function z ( h )  defined by ( 6 ) ,  and L is the exact critical point zc= 
f( 11 + 5d) (numerical identification). Given that L is the positive root of (1) and that 
(6) is a polynomial with integer coefficients of z"hP (rational coefficients would suffice) 
then it is possible to construct an algebraic proof that the negative root of (1) must 
also correspond to a branch point of the algebraic function z ( h )  (Burgess 1988). This 
proof is fairly lengthy and is omitted in the present letter. Armed with this theorem, 
on further exploration we indeed find this effect. A branch point exists at h = 
0.009 572 577. . .  corresponding to z = ;( 11 - 5 8 ) .  In figure 2 we show the algebraic 
curves in the domain 0 < h < 0.5. The sharp protrusion extending from the points P 
and P* interesects the real negative axis at the negative root of (1). Having found 
both points supports that conclusion that they are indeed the algebraic roots of (1) 
and not simply very close (ten significant figures) approximations. 

P --..- .............................. 
" . .  + D*-" ................................ 

........ ............ ........ 

Figure 2. The algebraic curve z( h )  obtained from ( 6 )  in the range 0 < h < 0.5. The extension 
of the curve through P and P* shown in the insert intersects the real negative axis. at 
2 =+( 11 - 5 ~ 6 ) .  

Numerically it appears that the 'banana' encasements shown in figure 1 persist for 
3 n  x 03 strips, becoming smaller as the branch point approaches the critical point; 
the intersection point L invariantly occurs at z = $( 11 + Sa). Consequently both roots 
of (1) correspond to branch points of R3"(z ,  h )  = 0 and are invariants associated with 
the semi-infinite lattice sequence 3 n  x 00. 

We are very grateful to Professor D A Burgess for the algebraic proof referred to in 
the text, and one of us (RWT) is grateful to the SERC for the award of a Research 
Assistantship. 

Appendix 

The symmetric polynomials cCl,(h) in ( 6 )  are listed below. 
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lji16 = h4(h  + 1)4( h 2  - 2)2(2h2 - 1)2 

- h 2 ( h +  1)2(24h14+56h13- 120h1'-348h1' 

+256hI0+974h9- 174h8-1393h7- 174h6+. . .) 

+h14 = ( h  + 1)~(32h"+ 80h17 - 232h16-640h15+ 1528h14+ 3992h13 -3488h" 

- 11 408h" +2449h10+ 16 527h9+2449h8 -. . .) 
I,!I~'= - h ( h  + 1)2(48h16+ 1920h1s+3752h14-9944h13-22 816h12+29 570h" 

+79534h10-19674h9-117275h8-19674h7+. . .) 
+ 1 2 =  h(48h18-2464h17-7376h'6+42772h1s+190624h14+112910h13 

- 476 61 8h" - 644 65631" + 490 059h1'+ 1376 400h9 + 490 059h8 - . . .) 

=2h(8h'8-812h'7-636h16+47 060h15+ 165 988h14-36 015h1'-896 650h12 

-1117 583h1'+553 852hI0+1859 374h9+553 852h8-. . .) 

+ l o =  -2h2(236hl6- 1084h" -44 042hI4- 127 376h1'+355 917h12+ 1935 999h" 

+2222328h1°-1191 542h9-3838 179h8-1191 542h7+. . .) 

$9 = -2h2(24h1'-784h'' -22 100h14-36 740h13 + 568 632h12 +2373 405h" 

+2422098h1"-2497 638h9-6266082h'-2497 638h7+. . .) 
+8=I1~(424h '~+12  184h13-17 156h12-905 628h1'-3574282h10-3047 939h9 

+ 6860 646h8 + 14 454 068 h7 + 6860 646 h6 - . , .) 
+ 7 =  h3(40h14+ 1632h13-18972h12-424298h11-1758430h10- 1147 168h' 

+5823 137h8+11 288 510h7+5823 137h6-. . ,) 

+6= h4(44hI2-5696h"- 123 338h'"-588 228h9-269981h' 

+3167 565h7+6007034h6+3167 565h5-. . .) 
+ 5 =  -h4(8h12+816h"+22 210h"+ 135 416h9+50216h8 

-1130775h7-2203 410h6-1130775h5+. . .) 

+ 4 =  -hS(52h"+2282h9+20 856h8+ 13 OlOh' 

-261 519h6-557086h5-261 519h4+. . ,) 

+3 = -4h6(27h8+498h7+909h6 -9160hs-23 900h4-9160h3+. . .) 

(cI2= -2h7(45h6+278hs- 1307h4- 5404h'- 1307h2+. . .) 

$1 = -4hs(8h4-9h3 - 186h' - 9h + 8) 

$ 0 ~  -4h9(h2 - 6h + 1). 
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